Quality of Videosuryeillance Streams
 with

Traditional Encoders and Decoderss
QART Presentation- July 2013

Videosurveillance Streams Rate Time Series

- Videosurveillance Streams, when encoded with traditional H. 264 encoders, at a given spatial resolution (HD, SD, 4CIF, CIF, other), constant frame frequency, and constant quantizer step, exhibit highly variable bit rates

CAM7, $6.250, \mathrm{H} 264,4 \mathrm{CIF}, \mathrm{QP}=26$: second average

QART Presentation - July 2013

Videosurveillance Streams Rate Histograms

- When making a rate histogram, multimodal distributions are not exceptional, especially when there are two (or more) modes of operation (day/night, week/weekend)

QART Presentation - July 2013

Videosurveillance Streams Rate Control

- Spectral analyses of the rate time series often contain very slow components (seasonal, weekly, daily)
- Uncontrollable operating parameters (weather, lighting) add to the variability and unpredictability of the rate
- The traditional approach to "absorb" the high variations consists in using CBR or VBR control mechanisms, that control the quantization parameter in closed loop
- Increasing QP to reduce the rate, when the (uncontrolled) rate tends to grow (because of noise, or motion/change content)
- Limiting variations in VBR (often to a factor less than 2)
- Consequence
- Degradation of the image quality, when one needs a good image (important when the images changes, or contains motion)
- Waste of bandwidth when the streams contains no useful information, to achieve a CBR

Videosurveillance Streatis

 Alternative Rate Control- Alternative 1: control other stream parameters (spatial resolution, frame rate) affecting the rate
- Acceptable in Videosurveillance, not in broadcast
- Alternative 2: allow high rate variations, but absorb these variations in the network switches (at least at the first level) by statistical multiplexing
- Specially designed managed switches
- Alternative 3: use rate control algorithms (upstream throttling) based on overall transmission channel parameters, especially congestion measures (downstream)
- Similar to TCP-IP, but affecting other parameters
- Alternative 4: use rate control algorithms based on end-toend Image Quality measures specialized for Videosurveillance Streams

Videosurveillance Streams Image Quality Measures for VS

- Videosurveillance Streams are defined by (essentially) three encoder parameters
- Spatial resolution
- Frame frequency
- Q quantizer step
- A measure of quality should be based on the following concepts (at least)
- Sharpness (mainly affected by spatial resolution)
- Fluidity; this is a complex concept, brought about by
\checkmark Frame frequency
\checkmark Frame frequency or phase jitter (very common in "low quality" VS systems)
\checkmark Frame dropping
- Latency
- All "dimensions" of the Quality Measure are affected by the encoder, the network transport mechanism, and the decoder

Thank you for your attention!

